【24h】

Balanced Boosting with Parallel Perceptrons

机译:带有平行感知器的均衡增强

获取原文
获取原文并翻译 | 示例

摘要

Boosting constructs a weighted classifier out of possibly weak learners by successively concentrating on those patterns harder to classify. While giving excellent results in many problems, its performance can deteriorate in the presence of patterns with incorrect labels. In this work we shall use parallel perceptrons (PP), a novel approach to the classical committee machines, to detect whether a pattern's label may not be correct and also whether it is redundant in the sense of being well represented in the training sample by many other similar patterns. Among other things, PP allow to naturally define margins for hidden unit activations, that we shall use to define the above pattern types. This pattern type classification allows a more nuanced approach to boosting. In particular, the procedure we shall propose, balanced boosting, uses it to modify boosting distribution updates. As we shall illustrate numerically, balanced boosting gives very good results on relatively hard classification problems, particularly in some that present a marked imbalance between class sizes.
机译:Boosting通过连续关注那些难以分类的模式,从可能弱小的学习者中构造了一个加权分类器。尽管在许多问题上均能提供出色的结果,但如果存在带有错误标签的图案,其性能可能会下降。在这项工作中,我们将使用平行感知器(PP),这是经典委员会机器的一种新颖方法,以检测图案的标签是否可能不正确,以及在许多人可以很好地在训练样本中很好地表示的意义上,它是否是多余的。其他类似的模式。除其他事项外,PP允许自然定义隐藏单元激活的边距,我们将使用它来定义上述模式类型。这种模式类型分类允许更细微的提升方法。特别是,我们将建议的程序,均衡增强,使用它来修改增强分发更新。正如我们将在数字上说明的那样,平衡提升在相对困难的分类问题上,尤其是在班级规模明显不平衡的某些问题上,给出了很好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号