首页> 外文会议>International Symposium on Parallel and Distributed Processing and Applications(ISPA 2004); 20041213-15; Hong Kong(CN) >Multi-grain Parallel Processing of Data-Clustering on Programmable Graphics Hardware
【24h】

Multi-grain Parallel Processing of Data-Clustering on Programmable Graphics Hardware

机译:可编程图形硬件上数据聚类的多粒度并行处理

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an effective scheme for clustering a huge data set using a commodity programmable graphics processing unit (GPU). Due to GPU's application-specific architecture, one of the current research issues is how to bind the rendering pipeline with the data-clustering process. By taking advantage of GPU's parallel processing capability, our implementation scheme is devised to exploit the multi-grain single-instruction multiple-data (SIMD) parallelism of the nearest neighbor search, which is the most computationally-intensive part of the data-clustering process. The performance of our scheme is discussed in comparison with that of the implementation entirely running on CPU. Experimental results clearly show that the parallelism of the nearest neighbor search allows our scheme to efficiently execute the data-clustering process. Although data-transfer from GPU to CPU is generally costly, acceleration by GPU is significant to save the total execution time of data-clustering.
机译:本文提出了一种使用商用可编程图形处理单元(GPU)聚类庞大数据集的有效方案。由于GPU的特定于应用程序的体系结构,当前的研究问题之一是如何将渲染管道与数据集群过程绑定在一起。通过利用GPU的并行处理能力,我们设计了一种实现方案,以利用最近邻居搜索的多粒度单指令多数据(SIMD)并行性,这是数据集群过程中计算量最大的部分。与完全在CPU上运行的实现相比,我们讨论了该方案的性能。实验结果清楚地表明,最近邻居搜索的并行性使我们的方案可以有效地执行数据聚类过程。尽管从GPU到CPU的数据传输通常比较昂贵,但是GPU的加速对于节省数据集群的总执行时间很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号