首页> 外文会议>International Symposium on Neural Networks(ISNN 2006) pt.2; 20060528-0601; Chengdu(CN) >A Cartoon Video Detection Method Based on Active Relevance Feedback and SVM
【24h】

A Cartoon Video Detection Method Based on Active Relevance Feedback and SVM

机译:基于主动相关反馈和支持向量机的卡通视频检测方法

获取原文
获取原文并翻译 | 示例

摘要

By analyzing the particular features of visual content for cartoon videos, 8 typical features of MPEG-7 descriptors are extracted to distinguish the cartoons from other videos. Then, a content-based video classifier is developed by combining the active relevance feedback technique and SVM for detecting the cartoon videos. The experimental results on the vast real video clips illustrate that compared with the classifier based on SVM and that based on traditional relevance feedback technique and SVM, the proposed classifier has a higher advantage of cartoon video detection.
机译:通过分析卡通视频的视觉内容的特定特征,提取了MPEG-7描述符的8个典型特征,以将卡通与其他视频区分开。然后,通过将主动相关反馈技术和支持向量机相结合来开发基于内容的视频分类器,以检测卡通视频。在大量真实视频片段上的实验结果表明,与基于SVM的分类器以及基于传统相关反馈技术和SVM的分类器相比,该分类器具有更高的卡通视频检测优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号