首页> 外文会议>International Symposium on Intelligence Computation amp; Applications(ISICA'2007); 20070921-23; Wuhan(CN) >An Effective Dynamical Multi-objective Evolutionary Algorithm for Solving Optimization Problems with High Dimensional Objective Space
【24h】

An Effective Dynamical Multi-objective Evolutionary Algorithm for Solving Optimization Problems with High Dimensional Objective Space

机译:解决高维目标空间优化问题的有效动力多目标进化算法

获取原文
获取原文并翻译 | 示例

摘要

An effective dynamical multi-objective evolutionary algorithm (DMOEA) based on the principle of the minimal free energy in thermodynamics was proposed in the paper. It provided a new fitness assignment strategy based on the principle of free energy minimization of thermodynamics for the convergence of solves, introduced a density-estimate technique for evaluating the crowding distance between individuals and a new criterion for selection of new individuals to maintain the diversity of the population. By using multi-crossover operator, it improved the search efficiency and the robustness. The test example results proves the validity of the algorithm in its rapidly convergence and maintaining diversity.
机译:提出了一种基于热力学中最小自由能原理的有效的动态多目标进化算法(DMOEA)。它为解决方案的收敛提供了一种基于热力学自由能最小化原理的适应度分配新策略,引入了一种评估个体之间拥挤距离的密度估算技术,并为维持个体多样性提供了新的选择标准。人口。通过使用多交叉算子,它提高了搜索效率和鲁棒性。测试实例结果证明了该算法在快速收敛和保持多样性方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号