首页> 外文会议>International Symposium on Advances in Visual Computing(ISVC 2005); 20051205-07; Lake Tahoe,NV(US) >Toward a Unified Probabilistic Framework for Object Recognition and Segmentation
【24h】

Toward a Unified Probabilistic Framework for Object Recognition and Segmentation

机译:迈向用于对象识别和分段的统一概率框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel and effective Bayesian belief network that integrates object segmentation and recognition. The network consists of three latent variables that represent the local features, the recognition hypothesis, and the segmentation hypothesis. The probabilities are the result of approximate inference based on stochastic simulations with Gibbs sampling, and can be calculated for large databases of objects. Experimental results demonstrate that this framework outperforms a feed-forward recognition system that ignores the segmentation problem.
机译:本文提出了一种新颖且有效的贝叶斯信念网络,该网络融合了对象分割和识别。网络由代表局部特征,识别假设和分段假设的三个潜在变量组成。概率是基于基于Gibbs采样的随机模拟的近似推断的结果,可以针对大型对象数据库进行计算。实验结果表明,该框架优于忽略了分割问题的前馈识别系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号