首页> 外文会议>International Conference on Intelligent Data Engineering and Automated Learning(IDEAL 2004); 20040825-20040827; Exeter; GB >Prediction of Natively Disordered Regions in Proteins Using a Bio-basis Function Neural Network
【24h】

Prediction of Natively Disordered Regions in Proteins Using a Bio-basis Function Neural Network

机译:使用生物基础功能神经网络预测蛋白质中的天然无序区域

获取原文
获取原文并翻译 | 示例

摘要

Recent studies have found that many proteins contain regions that do not form well defined three-dimensional structures in their native states. The study and detection of such disordered regions is very important both for facilitating structural analysis and to aid understanding of protein function. A newly developed pattern recognition algorithm termed a "Bio-basis Function Neural Network" has been applied to the detection of disordered regions in proteins. Different models were trained studying the effect of changing the size of the window used for residue classification. Ten-fold cross validation showed that the estimated prediction accuracy was 95.2% for a window size of 21 residues and an overlap threshold of 30%. Blind tests using the trained models on a data set unrelated to the training set gave a regional prediction accuracy of 81.4% (+-0.9%).
机译:最近的研究发现,许多蛋白质包含的区域在其天然状态下无法形成明确定义的三维结构。研究和检测此类无序区域对于促进结构分析和帮助理解蛋白质功能都非常重要。一种称为“生物基础功能神经网络”的新开发的模式识别算法已用于检测蛋白质中的无序区域。训练了不同的模型,研究了改变用于残留分类的窗口大小的影响。十倍交叉验证显示,对于21个残基的窗口大小和30%的重叠阈值,估计的预测准确性为95.2%。在与训练集无关的数据集上使用训练后的模型进行盲测试,得出的区域预测准确性为81.4%(+ -0.9%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号