首页> 外文会议>International Conference for High Performance Computing, Networking, Storage and Analysis >Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction
【24h】

Attacking the Opioid Epidemic: Determining the Epistatic and Pleiotropic Genetic Architectures for Chronic Pain and Opioid Addiction

机译:攻击阿片类药物流行:确定上位性和多发性遗传结构的慢性疼痛和阿片类药物成瘾

获取原文
获取原文并翻译 | 示例

摘要

We describe the CoMet application for large-scale epistatic Genome-Wide Association Studies (eGWAS) and pleiotropy studies. High performance is attained by transforming the underlying vector comparison methods into highly performant generalized distributed dense linear algebra operations. The 2-way and 3-way Proportional Similarity metric and Custom Correlation Coefficient are implemented using native or adapted GEMM kernels optimized for GPU architectures. By aggressive overlapping of communications, transfers and computations, high efficiency with respect to single GPU kernel performance is maintained up to the full Titan and Summit systems. Nearly 300 quadrillion element comparisons per second and over 2.3 mixed precision ExaOps are reached on Summit by use of Tensor Core hardware on the Nvidia Volta GPUs. Performance is four to five orders of magnitude beyond comparable state of the art. CoMet is currently being used in projects ranging from bioenergy to clinical genomics, including for the genetics of chronic pain and opioid addiction.
机译:我们描述了CoMet在大规模上位基因组-全基因组关联研究(eGWAS)和多效性研究中的应用。通过将基本的矢量比较方法转换为高性能的广义分布式密集线性代数运算,可以获得高性能。 2路和3路比例相似性度量标准和自定义相关系数是使用针对GPU架构优化的本机或适应的GEMM内核实现的。通过通信,传输和计算的积极重叠,可以在整个Titan和Summit系统上维持单个GPU内核性能方面的高效率。通过在Nvidia Volta GPU上使用Tensor Core硬件,在Summit上实现了每秒近300次万维元素比较和2.3种以上的混合精度ExaOps。性能比同类技术高出四到五个数量级。 CoMet当前用于从生物能源到临床基因组学的项目,包括用于慢性疼痛和阿片类药物成瘾的遗传学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号