首页> 外文会议>International Conference on Computational Science(ICCS 2006) pt.1; 20060528-31; Reading(GB) >Computationally Efficient Technique for Nonlinear Poisson-Boltzmann Equation
【24h】

Computationally Efficient Technique for Nonlinear Poisson-Boltzmann Equation

机译:非线性Poisson-Boltzmann方程的计算有效技术

获取原文
获取原文并翻译 | 示例

摘要

Discretization of non-linear Poisson-Boltzmann Equation equations results in a system of non-linear equations with symmetric Jacobian. The Newton algorithm is the most useful tool for solving nonlinear equations. It consists of solving a series of linear system of equations (Jacobian system). In this article, we adaptively define the tolerance of the Jacobian systems. Numerical experiment shows that compared to the traditional method our approach can save a substantial amount of computational work. The presented algorithm can be easily incorporated in existing simulators.
机译:非线性Poisson-Boltzmann方程方程的离散化导致一个具有对称Jacobian非线性方程组。牛顿算法是求解非线性方程组最有用的工具。它由求解一系列线性方程组(雅可比系统)组成。在本文中,我们自适应地定义了雅可比系统的公差。数值实验表明,与传统方法相比,我们的方法可以节省大量的计算工作。所提出的算法可以很容易地并入现有的模拟器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号