【24h】

A New Approach for Human Identification Using Gait Recognition

机译:一种利用步态识别技术进行人体识别的新方法

获取原文
获取原文并翻译 | 示例

摘要

Recognition of a person from gait is a biometric of increasing interest. This paper presents a new approach on silhouette representation to extract gait patterns for human recognition. Silhouette shape of a motion object is first represented by four 1-D signals which are the basic image features called the distance vectors. The distance vectors are differences between the bounding box and silhouette. Second, eigenspace transformation based on Principal Component Analysis is applied to time-varying distance vectors and the statistical distance based supervised pattern classification is then performed in the lower-dimensional eigenspace for recognition. A fusion task is finally executed to produce final decision. Experimental results on three databases show that the proposed method is an effective and efficient gait representation for human identification, and the proposed approach achieves highly competitive performance with respect to the published gait recognition approaches.
机译:从步态中识别人是一种越来越引起人们关注的生物特征。本文提出了一种新的轮廓表示方法,用于提取步态模式以供人识别。运动对象的轮廓形状首先由四个1-D信号表示,这是称为距离矢量的基本图像特征。距离矢量是边界框和轮廓之间的差异。其次,将基于主成分分析的特征空间变换应用于时变距离矢量,然后在低维特征空间中执行基于统计距离的监督模式分类,以进行识别。最终执行融合任务以产生最终决策。在三个数据库上的实验结果表明,该方法是一种有效且高效的步态表示方法,可用于人类识别,并且相对于已公开的步态识别方法,该方法具有很高的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号