【24h】

Speculative Parallelization of a Randomized Incremental Convex Hull Algorithm

机译:随机增量凸包算法的投机并行化

获取原文
获取原文并翻译 | 示例

摘要

Finding the fastest algorithm to solve a problem is one of the main issues in Computational Geometry. Focusing only on worst case analysis or asymptotic computations leads to the development of complex data structures or hard to implement algorithms. Randomized algorithms appear in this scenario as a very useful tool in order to obtain easier implementations within a good expected time bound. However, parallel implementations of these algorithms are hard to develop and require an in-depth understanding of the language, the compiler and the underlying parallel computer architecture. In this paper we show how we can use speculative parallelization techniques to execute in parallel iterative algorithms such as randomized incremental constructions. In this paper we focus on the convex hull problem, and show that, using our speculative parallelization engine, the sequential algorithm can be automatically executed in parallel, obtaining speedups with as little as four processors, and reaching 5.15x speedup with 28 processors.
机译:寻找最快的算法来解决问题是计算几何中的主要问题之一。仅关注最坏情况分析或渐近计算会导致开发复杂的数据结构或难以实现的算法。在这种情况下,随机算法是一种非常有用的工具,可以在预期的良好时限内获得更轻松的实现。但是,这些算法的并行实现很难开发,并且需要对语言,编译器和底层并行计算机体系结构有深入的了解。在本文中,我们展示了如何使用推测并行化技术来执行并行迭代算法,例如随机增量构造。在本文中,我们着重于凸包问题,并表明,使用我们的推测并行化引擎,可以自动并行执行顺序算法,只需四个处理器即可获得加速,而使用28个处理器则可以达到5.15倍的加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号