【24h】

Approximation Algorithms for 2-Source Minimum Routing Cost k-Tree Problems

机译:2源最小路由成本k-树问题的近似算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate some k-tree problems of graphs with given two sources. Let G = (V, E, w) be an undirected graph with nonnegative edge lengths and two sources s_1, s_2 £ V. The first problem is the 2-source minimum routing cost k-tree (2-kMRCT) problem, in which we want to find a tree T = (V_t,E_t) spanning k vertices such that the total distance from all vertex in V_t to the two sources is minimized, I.e., we want to minimize Σ_(v∈V_T){d_T(s_1,v)+d_T(s_2,v)}, in which d_T(s,v) is the length of the path between s and v on T. The second problem is the 2-source bottleneck source routing cost k-tree (2-kBSRT) problem, in which the objective function is the maximum total distance from any source to all vertices in V_t, I.e., max_(s∈(s_1,s_2)){Σ_(v∈V_T)d_T(s,v))}. The third problem is the 2-source bottleneck vertex routing cost k-tree (2-kBVRT) problem, in which the objective function is the maximum total distance from any vertex in V_t to the two sources , I.e., max_(v∈V_T)){d_T(s_1,v)+ d_T{s_2,v)}. In this paper, we present polynomial time approximation schemes (PTASs) for the 2-kMRCT and 2-kBVRT problems. For the 2-kBSRT problem, we give a (2 + ε)-approximation algorithm for any ε > 0.
机译:在本文中,我们研究了在给定两个来源的情况下图的一些k树问题。令G =(V,E,w)是具有非负边长且具有两个源s_1,s_2 £ V的无向图。第一个问题是2源最小路由成本k树(2-kMRCT)问题,其中我们想找到一棵树T =(V_t,E_t)跨越k个顶点,从而使V_t中所有顶点到两个源的总距离最小,即我们想最小化Σ_(v∈V_T){d_T(s_1, v)+ d_T(s_2,v)},其中d_T(s,v)是T上s和v之间路径的长度。第二个问题是2源瓶颈源路由成本k-树(2- kBSRT)问题,其中目标函数是从任何源到V_t中所有顶点的最大总距离,即max_(s∈(s_1,s_2)){Σ_(v∈V_T)d_T(s,v))} 。第三个问题是2源瓶颈顶点路由成本k树(2-kBVRT)问题,其中目标函数是V_t中任何顶点到两个源的最大总距离,即max_(v∈V_T) ){d_T(s_1,v)+ d_T {s_2,v)}。在本文中,我们提出了针对2-kMRCT和2-kBVRT问题的多项式时间逼近方案(PTAS)。对于2-kBSRT问题,对于任何ε> 0的情况,我们给出(2 +ε)近似算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号