【24h】

Rough Set-Based Decision Tree Construction Algorithm

机译:基于粗糙集的决策树构建算法

获取原文
获取原文并翻译 | 示例

摘要

We apply rough set theory to obtain knowledge from the construction of a decision tree. Decision trees are widely used in machine learning. A variety of methods for making decision trees have been developed. Our algorithm, which compares the core attributes of objects and builds decision trees based on those attributes, represents a new type of tree construction. Experiments show that the new algorithm can help to extract more meaningful and accurate rules than other algorithms.
机译:我们应用粗糙集理论从决策树的构建中获取知识。决策树广泛用于机器学习。已经开发出各种用于决策树的方法。我们的算法比较了对象的核心属性,并根据这些属性构建了决策树,它代表了一种新型的树结构。实验表明,与其他算法相比,新算法可以帮助提取更有意义,更准确的规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号