首页> 外文会议>International conference on computational methods in science and engineering 2014 >Monthly Monsoon Rainfall Forecasting using Artificial Neural Networks
【24h】

Monthly Monsoon Rainfall Forecasting using Artificial Neural Networks

机译:基于人工神经网络的季风雨量预报

获取原文
获取原文并翻译 | 示例

摘要

Indian agriculture sector heavily depends on monsoon rainfall for successful harvesting. In the past, prediction of rainfall was mainly performed using regression models, which provide reasonable accuracy in the modelling and forecasting of complex physical systems. Recently, Artificial Neural Networks (ANNs) have been proposed as efficient tools for modelling and forecasting. A feed-forward multi-layer perceptron type of ANN architecture trained using the popular back-propagation algorithm was employed in this study. Other techniques investigated for modeling monthly monsoon rainfall include linear and non-linear regression models for comparison purposes. The data employed in this study include monthly rainfall and monthly average of the daily maximum temperature in the North Central region in India. Specifically, four regression models and two ANN model's were developed. The performance of various models was evaluated using a wide variety of standard statistical parameters and scatter plots. The results obtained in this study for forecasting monsoon rainfalls using ANNs have been encouraging. India's economy and agricultural activities can be effectively managed with the help of the availability of the accurate monsoon rainfall forecasts.
机译:印度农业部门严重依赖季风降雨来获得成功。过去,降雨的预测主要是使用回归模型进行的,该模型在复杂物理系统的建模和预测中提供了合理的准确性。最近,人工神经网络(ANN)已被提出作为建模和预测的有效工具。在这项研究中采用了使用流行的反向传播算法训练的ANN结构的前馈多层感知器类型。为比较季风而研究的其他用于模拟季风降雨的技术包括线性和非线性回归模型。本研究采用的数据包括印度北部中部地区的每月降雨量和每日最高气温的每月平均值。具体来说,开发了四个回归模型和两个ANN模型。使用多种标准统计参数和散点图评估了各种模型的性能。在这项研究中使用人工神经网络预测季风降雨的结果令人鼓舞。借助准确的季风降雨量预报,可以有效地管理印度的经济和农业活动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号