首页> 外文会议>International Conference on Computational Intelligence and Security(CIS 2006) pt.2; 20061103-06; Guangzhou(CN) >Analysis On Fisher Discriminant Criterion And Linear Separability Of Feature Space
【24h】

Analysis On Fisher Discriminant Criterion And Linear Separability Of Feature Space

机译:特征空间的Fisher判别准则和线性可分性分析

获取原文
获取原文并翻译 | 示例

摘要

For feature extraction resulted from Fisher discriminant analysis (FDA), it is expected that the optimal feature space is as low-dimensional as possible while its linear separability among different classes is as large as possible. Note that the existing theoretical expectation on the optimal feature dimensionality may contradict with experimental results. Due to this, we address the optimal feature dimensionality problem with this paper. The multi-dimension Fisher criterion is used to measure the linear separability of the feature space obtained using FDA and to analyze the optimal feature dimensionality problem. We also attempt to answer the question "what kind of real-world application is FDA competent for". Theoretical analysis shows that the genuine optimal feature dimensionality should be lower than that presented by Jin et al. A number of experiments illustrate that the proposed optimal feature extraction does have advantages.
机译:对于通过Fisher判别分析(FDA)进行的特征提取,预期最佳特征空间应尽可能低维,而不同类别之间的线性可分离性则应尽可能大。请注意,关于最佳特征尺寸的现有理论预期可能与实验结果相矛盾。因此,我们用本文解决了最佳特征维数问题。多维Fisher准则用于测量使用FDA获得的特征空间的线性可分离性,并分析最佳特征维数问题。我们还尝试回答“ FDA能够胜任哪种实际应用”的问题。理论分析表明,真正的最佳特征维数应低于Jin等人提出的特征维数。大量实验表明,提出的最佳特征提取确实具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号