首页> 外文会议>International Conference on Computational Intelligence and Security(CIS 2005) pt.1; 20051215-19; Xi'an(CN) >An Incremental Updating Method for Clustering-Based High-Dimensional Data Indexing
【24h】

An Incremental Updating Method for Clustering-Based High-Dimensional Data Indexing

机译:基于聚类的高维数据索引的增量更新方法

获取原文
获取原文并翻译 | 示例

摘要

Content-based information retrieval (CBIR) of multimedia data is an active research topic in intelligent information retrieval field. To support CBIR, high-dimensional data indexing and query is a challenging problem due to the inherent high dimension of multimedia data. Clustering-based indexing structures have been proved to be efficient for high-dimensional data indexing. However, most clustering-based indexing structures are static, in which new data cannot be inserted by just modifying the existing clusters or indexing structures. To resolve this problem, a two-level indexing method, called IASDS plus IPAT method, is developed in this paper. At the IASDS level, clusters and the corresponding subspaces can be incrementally updated, while the indexing structures within the clusters can be incrementally updated at the IPAT level. Furthermore, the proposed IASDS plus IPAT method is able to balance indexing efficiency and query accuracy by choosing an appropriate number of children nodes. The experimental results show that the IASDS plus IPAT method is very efficient for updating clusters and indexing structures with newly inserted data, and that its query accuracy is only slightly degraded while its query time is almost the same in comparison with the similar indexing structure built by non-incremental method.
机译:多媒体数据的基于内容的信息检索(CBIR)是智能信息检索领域的一个活跃的研究课题。为了支持CBIR,由于多媒体数据固有的高维性,因此高维数据索引和查询是一个具有挑战性的问题。基于聚类的索引结构已被证明对高维数据索引有效。但是,大多数基于群集的索引结构都是静态的,其中仅通过修改现有群集或索引结构就无法插入新数据。为了解决这个问题,本文开发了一种两级索引方法,称为IASDS加IPAT方法。在IASDS级别上,群集和相应的子空间可以增量更新,而群集中的索引结构可以在IPAT级别增量更新。此外,提出的IASDS加IPAT方法能够通过选择适当数量的子节点来平衡索引效率和查询准确性。实验结果表明,IASDS + IPAT方法对于用新插入的数据更新聚类和索引结构非常有效,并且与由IIS构建的类似索引结构相比,其查询精度仅略微下降,而查询时间却几乎相同。非增量方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号