首页> 外文会议>International Conference on Computational Intelligence and Security(CIS 2005) pt.1; 20051215-19; Xi'an(CN) >Two Adaptive Matching Learning Algorithms for Independent Component Analysis
【24h】

Two Adaptive Matching Learning Algorithms for Independent Component Analysis

机译:两种独立成分分析的自适应匹配学习算法

获取原文
获取原文并翻译 | 示例

摘要

Independent component analysis (ICA) has been applied in many fields of signal processing and many ICA learning algorithms have been proposed from different perspectives. However, there is still a lack of a deep mathematical theory to describe the ICA learning algorithm or problem, especially in the cases of both super- and sub-Gaussian sources. In this paper, from the point of view of the one-bit-matching principle, we propose two adaptive matching learning algorithms for the general ICA problem. It is shown by the simulation experiments that the adaptive matching learning algorithms can efficiently solve the ICA problem with both super- and sub-Gaussian sources and outperform the typical existing ICA algorithms in certain aspects.
机译:独立分量分析(ICA)已应用于信号处理的许多领域,并且从不同角度提出了许多ICA学习算法。但是,仍然缺乏用于描述ICA学习算法或问题的深入数学理论,尤其是在超高斯源和次高斯源的情况下。本文从一位匹配原理的角度出发,针对一般的ICA问题,提出了两种自适应匹配学习算法。仿真实验表明,自适应匹配学习算法可以有效地解决超高斯源和亚高斯源的ICA问题,并且在某些方面优于典型的现有ICA算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号