首页> 外文会议>International Conference on Artificial Neural Nets and Genetic Algorithms, 2001, Prague, Czech Republic >Dynamic Handwriting Recognition Based on an Evolutionary Neural Classifier
【24h】

Dynamic Handwriting Recognition Based on an Evolutionary Neural Classifier

机译:基于进化神经分类器的动态手写识别

获取原文
获取原文并翻译 | 示例

摘要

At the present time, most of the classification problems have to deal with heterogeneous data presenting a strong variability, even within a class. It seems therefore relevant to substitute to the notion of class, the notion of sub-class, the latter regrouping a relatively homogeneous subset of examples. In order to generate these sub-classes (and models that are associated them) automatically, we developed an evolutionary neural classifier . At the beginning, it is made of as many networks as the number of classes of the problem. During the training, the number of networks evolves in order to modelize to the best the different sub-classes and to decrease the overall confusion rate between classes. An application of this classifier is the recognition of unconstrained dynamic handwriting: the multiplication of character models (called allographs) makes essential the automatic sub-class generation. Results, tested on some 25000 letters of the Unipen database are very encouraging.
机译:目前,大多数分类问题都必须处理呈现出很大变异性的异构数据,即使在一个类中也是如此。因此,似乎有必要用类的概念代替子类的概念,而子类的概念则重新组合了实例的相对同质子集。为了自动生成这些子类(及其关联的模型),我们开发了一种进化神经分类器。最初,它由与问题类别数量一样多的网络组成。在训练过程中,网络的数量不断变化,以便对不同的子类别进行最佳建模,并降低各个类别之间的总体混淆率。该分类器的一个应用是识别无限制的动态笔迹:字符模型(称为同形异形文字)的乘法运算使自动子类生成成为必需。在Unipen数据库的大约25000个字母上测试的结果令人鼓舞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号