首页> 外文会议>International Conference on Adaptive and Natural Computing Algorithms; 2005; Coimbra(PT) >Probabilistic Artificial Neural Networks for Malignant Melanoma Prognosis
【24h】

Probabilistic Artificial Neural Networks for Malignant Melanoma Prognosis

机译:恶性黑色素瘤预后的概率人工神经网络

获取原文
获取原文并翻译 | 示例

摘要

Artificial Neural networks (ANNs) have found applications in a wide variety of medical problems and have proved successful for non-linear regression and classification. This paper details a novel and flexible probabilistic non-linear ANN model for the prediction of conditional survival probability of malignant melanoma patients. Hazard and probability density functions are also estimated. The model is trained using the log-likelihood function, and generalisation has been addressed. Unrestricted by assumptions that are unrealistic or parametric forms that are difficult to justify, the model thereby attains advantage over traditional statistical models. Furthermore, an estimate of the variance-covariance matrix is obtained using the asymptotic Fisher information matrix. Implemented in an Excel® spreadsheet, the model's user-friendly design further adds to its flexibility, with much potential for use by statisticians as well as researchers.
机译:人工神经网络(ANN)已在各种医学问题中得到应用,并已被证明可成功用于非线性回归和分类。本文详细介绍了一种新颖且灵活的概率非线性ANN模型,用于预测恶性黑色素瘤患者的条件生存率。还估算了危险和概率密度函数。使用对数似然函数对模型进行训练,并且已经解决了泛化问题。由于不受难以证明的不现实或参数形式的假设的限制,因此该模型获得了优于传统统计模型的优势。此外,使用渐近Fisher信息矩阵获得方差-协方差矩阵的估计。该模型的用户友好设计在Excel®电子表格中实施,进一步增加了它的灵活性,在统计学家和研究人员中都有很大的使用潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号