【24h】

Modeling Disease Progression in Retinal OCTs with Longitudinal Self-supervised Learning

机译:纵向自我监督学习在视网膜OCT中模拟疾病进展

获取原文

摘要

Longitudinal imaging is capable of capturing the static anatomical structures and the dynamic changes of the morphology resulting from aging or disease progression. Self-supervised learning allows to learn new representation from available large unlabelled data without any expert knowledge. We propose a deep learning self-supervised approach to model disease progression from longitudinal retinal optical coherence tomography (OCT). Our self-supervised model takes benefit from a generic time-related task, by learning to estimate the time interval between pairs of scans acquired from the same patient. This task is (ⅰ) easy to implement, (ⅱ) allows to use irregularly sampled data, (ⅲ) is tolerant to poor registration, and (ⅳ) does not rely on additional annotations. This novel method learns a representation that focuses on progression specific information only, which can be transferred to other types of longitudinal problems. We transfer the learnt representation to a clinically highly relevant task of predicting the onset of an advanced stage of age-related macular degeneration within a given time interval based on a single OCT scan. The boost in prediction accuracy, in comparison to a network learned from scratch or transferred from traditional tasks, demonstrates that our pretrained self-supervised representation learns a clinically meaningful information.
机译:纵向成像能够捕获由衰老或疾病进展导致的静态解剖结构和形态的动态变化。自我监督学习允许无需任何专业知识即可从可用的未标记大型数据中学习新的表示形式。我们提出了一种深度学习自我监督方法,以从纵向视网膜光学相干断层扫描(OCT)建模疾病进展。我们的自我监督模型通过学习估计从同一患者获得的几对扫描之间的时间间隔,从而受益于与时间相关的一般任务。此任务很容易实现,允许使用不规则采样的数据,允许差的注册,并且不依赖其他注释。这种新颖的方法可以学习只关注特定于进度的信息的表示形式,该信息可以转移到其他类型的纵向问题上。我们将学到的表征转移到临床上高度相关的任务,该任务基于单个OCT扫描在给定的时间间隔内预测年龄相关性黄斑变性的晚期发作。与从头开始学习或从传统任务转移而来的网络相比,预测准确性的提高表明,我们经过预训练的自我监督表示可以学习具有临床意义的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号