【24h】

Mutant Accuracy Testing for Assessing the Implementation of Numerical Algorithms

机译:突变精度测试,用于评估数值算法的实现

获取原文

摘要

Despite their widespread use, implementations of numerical computing algorithms are generally tested manually with fuzzily defined thresholds determining success or failure. Modern software testing methods, such as automated regression testing, are difficult to apply because both test oracles and algorithm output are approximate. Based on the observation that high accuracy numerical algorithms appear to be fragile by design to errors in their parameters, we propose to compare the error of target implementations to mutated versions of themselves with the expectation that the mutants will suffer degraded accuracy. We test the idea on Matlab implementations of some basic numerical algorithms, and find that most mutants are worse while the few which are better show a distinctive pattern of mutation.
机译:尽管广泛使用了数值计算算法,但通常还是使用模糊定义的阈值来手动测试数值计算算法的成功或失败。诸如自动回归测试之类的现代软件测试方法很难应用,因为测试预言和算法输出都是近似的。基于观察到高精度数值算法在设计上似乎对其参数错误易碎,我们建议将目标实现的错误与自身的变异版本进行比较,以期突变体的准确性会降低。我们在一些基本数值算法的Matlab实现上测试了这一想法,发现大多数突变体的性能较差,而少数突变体的性能更好,它们表现出独特的突变模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号