【24h】

Modelling time evolving interactions in networks through a non stationary extension of stochastic block models

机译:通过随机块模型的非平稳扩展来建模网络中时间演化的交互

获取原文

摘要

The stochastic block model (SBM) [1] describes interactions between nodes of a network following a probabilistic approach. Nodes belong to hidden clusters and the probabilities of interactions only depend on these clusters. Interactions of time varying intensity are not taken into account. By partitioning the whole time horizon, in which interactions are observed, we develop a non stationary extension of the SBM, allowing us to simultaneously cluster the nodes of a network and the fixed time intervals in which interactions take place. The number of clusters as well as memberships to clusters are finally obtained through the maximization of the complete-data integrated likelihood relying on a greedy search approach. Experiments are carried out in order to assess the proposed methodology.
机译:随机块模型(SBM)[1]描述了遵循概率方法的网络节点之间的交互。节点属于隐藏的群集,并且交互的概率仅取决于这些群集。没有考虑时变强度的相互作用。通过划分观察交互的整个时间范围,我们开发了SBM的非平稳扩展,从而使我们可以同时将网络的节点和发生交互的固定时间间隔聚类。依靠贪婪搜索方法,通过使完整数据的综合似然性最大化,最终获得聚类的数量以及聚类的成员资格。为了评估提出的方法进行了实验。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号