【24h】

ClearTAC: Verb Tense, Aspect, and Form Classification Using Neural Nets

机译:ClearTAC:使用神经网络的动词时态,方面和形式分类

获取原文

摘要

This paper proposes using a Bidirectional LSTM-CRF model in order to identify the tense and aspect of verbs. The information that this classifier outputs can be useful for ordering events and can provide a pre-processing step to improve efficiency of annotating this type of information. This neural network architecture has been successfully employed for other sequential labeling tasks, and we show that it significantly outperforms the rule-based tool TMV-annotator on the Propbank I dataset.
机译:本文提出使用双向LSTM-CRF模型来识别动词的时态和方面。该分类器输出的信息对于排序事件可能有用,并且可以提供预处理步骤,以提高注释此类信息的效率。这种神经网络体系结构已成功用于其他顺序标注任务,并且我们证明了它在Propbank I数据集上的性能明显优于基于规则的工具TMV-annotator。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号