首页> 外文会议>International Workshop on Combinatorial Algorithms >Towards a Complexity Dichotomy for Colourful Components Problems on k-caterpillars and Small-Degree Planar Graphs
【24h】

Towards a Complexity Dichotomy for Colourful Components Problems on k-caterpillars and Small-Degree Planar Graphs

机译:面向k-类别和小度平面图上的彩色分量问题的复杂性二分法

获取原文

摘要

A connected component of a vertex-coloured graph is said to be colourful if all its vertices have different colours, and a graph is colourful if all its connected components are colourful. Given a vertex-coloured graph, the Colourful Components problem asks whether there exist at most p edges whose removal makes the graph colourful, and the Colourful Partition problem asks whether there exists a partition of the vertex set with at most p parts such that each part induces a colourful component. We study the problems on k-caterpillars (caterpillars with hairs of length at most k) and explore the boundary between polynomial and NP-complete cases. It is known that the problems are NP-complete on 2-caterpillars with unbounded maximum degree. We prove that both problems remain NP-complete on binary 4-caterpillars and on ternary 3-caterpillars. This answers an open question regarding the complexity of the problems on trees with maximum degree at most 5. On the positive side, we give a linear time algorithm for 1-caterpillars with unbounded degree, even if the backbone is a cycle, which outperforms the previous best complexity for paths and widens the class of graphs. Finally, we answer an open question regarding the complexity of Colourful Components on graphs with maximum degree at most 5. We show that the problem is NP-complete on 5-coloured planar graphs with maximum degree 4, and on 12-coloured planar graphs with maximum degree 3. Since the problem can be solved in polynomial-time on graphs with maximum degree 2, the results are the best possible with regard to the maximum degree.
机译:如果顶点着色图的所有顶点具有不同的颜色,则将其称为彩色;如果顶点连接的所有图元均具有彩色,则该图为彩色。给定一个顶点着色的图,Colorful Components问题询问是否存在最多p个边缘,其去除使该图变为彩色; Colorful Partition问题询问是否存在一个顶点集的分区,该分区最多包含p个部分,每个部分产生色彩鲜艳的成分。我们研究了k个类别(毛发长度最大为k的类别)上的问题,并探索了多项式和NP完全案例之间的边界。众所周知,问题是最大程度无界的2个类别的NP完全问题。我们证明这两个问题在二元4类和三元3类上仍然是NP完全的。这回答了一个关于最大度数最大为5的树的问题的复杂性的悬而未决的问题。在积极方面,即使主干是一个循环,我们也给出了一个线性时间算法,用于无度数的1个类别的柱,其性能优于先前路径的最佳复杂度,并拓宽了图的类别。最后,我们回答一个最大程度为5的图形上的彩色组件的复杂性的开放性问题。我们证明,问题在最大程度为4的5色平面图和具有12色的平面图上具有NP完全性。最大阶数为3。由于可以在最大阶数为2的图中以多项式方式解决问题,因此就最大阶数而言,结果是最好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号