首页> 外文会议>International Workshop on Artificial Intelligence in Radiation Therapy;International Conference on Medical Image Computing and Computer Assisted Intervention >One-Dimensional Convolutional Network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning
【24h】

One-Dimensional Convolutional Network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning

机译:一维卷积网络用于食管放射治疗计划中风干器官剂量学评估

获取原文

摘要

Dose volume histogram (DVH) is an important dosimetry evaluation metric and it plays an important role in guiding the development of esophageal ra-diotherapy treatment plans. Automatic DVH prediction is therefore very use-ful to achieve high-quality esophageal treatment planning. This paper studied stacked denoise auto-encoder (SDAE) to compute correlation between DVH and distance to target histogram (DTH) based on the fact that the geometric information between PTV and OAR is closely related to DVH, this study aims to establish a multi-OAR geometry-dosimetry model through deep learning to achieve DVH prediction. Distance to target histogram (DTH) is chosen to measure the geometrical relationship between PTV and OARs. In the proposed method, stacked denoise auto-encoder (SDAE) is used to reduce the dimension of the extracted DTH and DVH features, and then one-dimensional convolutional network (one-DCN) is used for the correlation modeling. This model can predict the DVH of multiple OARs based on the individual patient's geometry without manual removal of radiation plans with outliers. The average prediction error of the measurement focusing on the left lung, right lung, heart, spinal cord was less than 5%. The predicted DVHs could thus provide accurate optimization parameters, which could be a useful reference for physicists to reduce planning time.
机译:剂量体积直方图(DVH)是一种重要的剂量学评估指标,在指导食管放射治疗方案的制定中起着重要作用。因此,自动DVH预测对于实现高质量的食道治疗计划非常有用。本文基于PTV和OAR之间的几何信息与DVH密切相关的事实,研究了堆叠式降噪自动编码器(SDAE),以计算DVH与目标直方图的距离(DTH)之间的相关性,本研究旨在建立一个多OAR几何剂量模型通过深度学习来实现DVH预测。选择到目标直方图的距离(DTH)以测量PTV和OAR之间的几何关系。在该方法中,使用堆叠降噪自动编码器(SDAE)来减小提取的DTH和DVH特征的维数,然后使用一维卷积网络(one-DCN)进行相关建模。该模型可以基于单个患者的几何形状预测多个OAR的DVH,而无需手动删除异常值的辐射计划。围绕左肺,右肺,心脏,脊髓的测量的平均预测误差小于5%。因此,预测的DVH可以提供准确的优化参数,这对于物理学家减少计划时间可能是有用的参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号