首页> 外文会议>International Workshop on Acoustic Signal Enhancement >A New Speech Enhancement Approach Based on Progressive Deep Neural Networks
【24h】

A New Speech Enhancement Approach Based on Progressive Deep Neural Networks

机译:基于渐进式深度神经网络的语音增强新方法

获取原文

摘要

In this paper, a speech enhancement method based on the framework of progressive deep neural networks (PDNNs) is proposed to alleviate the recognition performance degradation of the automatic speech recognition (ASR) system in low signal-to-noise ratio (SNR) environments. It aims at decomposing a regression task into multiple subtasks, which are closely related to each other, to improve the system performance. Then the learning targets of these subtasks are designed with gradually increasing SNR gains. Furthermore, a post-processing module, which benefits from the rich information of the learning targets, is applied to further improve the system performance. Experimental results reveal that the proposed method can achieve improvements in both objective and subjective evaluations in low SNR environments when compared with the conventional deep neural network method.
机译:本文提出了一种基于递进深度神经网络(PDNN)框架的语音增强方法,以缓解低信噪比(SNR)环境下自动语音识别(ASR)系统的识别性能下降。它旨在将回归任务分解为彼此密切相关的多个子任务,以提高系统性能。然后,通过逐渐增加SNR增益来设计这些子任务的学习目标。此外,受益于学习目标的丰富信息的后处理模块被应用于进一步改善系统性能。实验结果表明,与传统的深度神经网络方法相比,该方法可以在低信噪比环境下实现客观和主观评估的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号