首页> 外文会议>International Symposium on Neural Networks >Multi Step Prediction of Landslide Displacement Time Series Based on Extended Kalman Filter and Back Propagation Trough Time
【24h】

Multi Step Prediction of Landslide Displacement Time Series Based on Extended Kalman Filter and Back Propagation Trough Time

机译:基于扩展卡尔曼滤波和反向传播波谷时间的滑坡位移时间序列多步预测

获取原文

摘要

Landslide is a complex geological natural disaster that brings harm or damage to human beings and their living environment. By strengthening landslide monitoring and forecasting technology, people can avoid or reduce the impact of disasters more reasonably. At present, the single step prediction of landslide displacement time series mainly uses t time to predict the data of t+1 moment, which obviously makes it difficult for people to take appropriate measures to deal with landslide changes. In this paper, a time reverse recursive algorithm based on extended Kalman filter (EKF)and Back propagation trough time (BPTT) method, is used to predict landslide displacement in order to extend the time width of landslide prediction. The EKF is firstly used to optimize the BPTT weights, and then the network parameters are adjusted in real time to improve the reliability of the prediction. Finally, the landslide displacement data of Liangshuijing (LSJ) in the three Gorges Reservoir area is used as experimental samples to verify the feasibility and practicability of EKF-BPTT.
机译:滑坡是一种复杂的地质自然灾害,对人类及其生活环境造成伤害或破坏。通过加强滑坡监测和预报技术,人们可以更合理地避免或减少灾害的影响。目前,滑坡位移时间序列的单步预测主要使用t时间来预测t + 1时刻的数据,这显然使人们难以采取适当的措施来应对滑坡变化。本文采用基于扩展卡尔曼滤波(EKF)和反向传播波谷时间(BPTT)方法的时间反向递归算法来预测滑坡位移,以扩展滑坡预测的时间宽度。 EKF首先用于优化BPTT权重,然后实时调整网络参数以提高预测的可靠性。最后,以三峡库区凉水井(LSJ)的滑坡位移数据为实验样本,验证了EKF-BPTT的可行性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号