首页> 外文期刊>Journal of information and computational science >Nonlinear Time Series Prediction Using Iterated Extended Kalman Filter Trained Single Multiplicative Neuron Model
【24h】

Nonlinear Time Series Prediction Using Iterated Extended Kalman Filter Trained Single Multiplicative Neuron Model

机译:迭代扩展卡尔曼滤波训练的单乘神经元模型的非线性时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

Single Multiplicative Neuron (SMN) model is much simpler in structure than many other conventional Artificial Neural Networks (ANNs) and can offer better performances if properly trained, and dynamic filters have the advantage of being able to handle observations that change with time. In this paper we proposed an Iterated Extended Kalman Filter (IEKF) based SMN model for the prediction of nonlinear time series. The filter model is established by using the weights and biases of SMN to present the state vector and the output of SMN to present the observation equation, and the input vector to the SMN is composed of the known predicted values with given length. Different from traditional methods for time series prediction which split the predicted time series into training and test sets, the proposed approach is recursive and is well suited to on-line processing as a new observation arrived, and the whole prediction process is in a training state and can update the respective models from time to time. So the suggested technique can be suitable for the possible changes of system model. Finally, experiments on the predictions of Mackey-Glass time series, Box-Jenkins gas furnace data and Electroencephalogram (EEG) data are done and the results show that the IEKF-based SMN algorithm can achieve higher precision and better timeliness than that of previous study on the same data sets.
机译:单一乘法神经元(SMN)模型的结构比许多其他传统的人工神经网络(ANN)简单得多,并且如果经过适当训练,可以提供更好的性能,并且动态过滤器具有能够处理随时间变化的观察值的优势。在本文中,我们提出了基于迭代扩展卡尔曼滤波器(IEKF)的SMN模型来预测非线性时间序列。通过使用SMN的权重和偏差表示状态矢量,并使用SMN的输出表示观察方程,建立滤波器模型,SMN的输入矢量由已知长度的给定长度的预测值组成。与传统的时间序列预测方法不同,该方法将预测的时间序列分为训练集和测试集,该方法是递归的,非常适合在新观察到时进行在线处理,并且整个预测过程都处于训练状态并可以不时更新各自的模型。因此,所建议的技术可能适合于系统模型的可能更改。最后,对Mackey-Glass时间序列,Box-Jenkins煤气炉数据和脑电图(EEG)数据进行了预测,结果表明,基于IEKF的SMN算法比以前的研究具有更高的精度和更好的时效性。在相同的数据集上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号