首页> 外文会议>International Symposium on Multidisciplinary Studies and Innovative Technologies >Sentiment Analysis using Naive Bayes and Complement Naive Bayes Classifier Algorithms on Hadoop Framework
【24h】

Sentiment Analysis using Naive Bayes and Complement Naive Bayes Classifier Algorithms on Hadoop Framework

机译:在Hadoop框架上使用朴素贝叶斯和互补朴素贝叶斯分类器算法进行情感分析

获取原文

摘要

Sentiment analysis is a popular topic of scientific and market research areas in the last years. Sentiments can be in form of attitudes, emotions and opinions. Sentiment analysis focuses on texts such as reviews and attitudes about a product, a person, an event or an idea. In general, texts are classified into two groups such as positive-negative, good-bad, like-dislike etc. On the other hand, more classes can be added to these groups. Sentiments can be classified using machine learning methods, lexicon-based methods and hybrid which is combination of machine learning techniques and lexicon-based technique. In this study, sentiment analysis was conducted using machine learning techniques such as Naive Bayes and Complement Naive Bayes Algorithms using Hadoop software framework. Experiments were carried out using varying sizes of training datasets and about 8 million of reviews were classified as positive, negative and neutral. Performance of the algorithms were compared according to accuracy, precision, recall, and F-measure performance evaluation criterions.
机译:情感分析是近年来科学和市场研究领域的热门话题。情感可以是态度,情感和观点的形式。情感分析的重点是诸如对产品,人员,事件或想法的评论和态度之类的文本。通常,文本分为两类,例如正负,好坏,喜欢-不喜欢等。另一方面,可以将更多类别添加到这些组中。可以使用机器学习方法,基于词典的方法以及将机器学习技术和基于词典的技术相结合的混合来对情感进行分类。在这项研究中,情感分析是使用机器学习技术进行的,例如使用Hadoop软件框架的朴素贝叶斯和互补朴素贝叶斯算法。实验使用各种规模的训练数据集进行,大约有800万条评论被分为正面,负面和中立。根据准确性,精度,召回率和F量度性能评估标准比较了算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号