首页> 外文会议>International Symposium on Mathematical and Computational Oncology >Towards Model-Based Characterization of Biomechanical Tumor Growth Phenotypes
【24h】

Towards Model-Based Characterization of Biomechanical Tumor Growth Phenotypes

机译:迈向基于模型的生物力学肿瘤生长表型表征

获取原文

摘要

Gliomas are the most common malignant brain tumors in adults, with Glioblastoma (GBM) being the most agressive subtype. GBM is clinically evaluated with magnetic resonance imaging (MRI) and presents with different growth phenotypes, involving varying degrees of healthy tissue invasion and tumor induced herniation, also known as mass effect. GBM growth in the brain is frequently modeled as a reaction-diffusion process in which varying ratios of diffusion and proliferation coefficients mimic the observed spectrum of growth phenotypes ranging from nodal to diffuse. However, reaction-diffusion models alone are insufficient to explain tumor-induced mass effect on normal peripheral tissues, which is a critical clinical issue. We propose an analysis method and framework for estimating GBM growth properties (proliferation, invasiveness, displacive potential) from MRI data routinely collected in the clinical management of GBM. This framework accounts for the mass-effect of the growing tumor by assuming a coupling between local tumor-cell density and volumetric expansion of the tissue. We evaluate the reconstruction workflow on synthetic data that represents a range of realistic growth situations and levels of uncertainty. For most parameter combinations (90%) that correspond to tumors detectable by T1-weighted MRI, target parameters are recovered with a relative error of less than 15%.
机译:胶质瘤是成年人中最常见的恶性脑肿瘤,胶质母细胞瘤(GBM)是最令人讨厌的亚型。 GBM已通过磁共振成像(MRI)在临床上进行了评估,并呈现出不同的生长表型,涉及不同程度的健康组织浸润和肿瘤诱发的疝,也称为质量效应。脑中GBM的生长通常被建模为反应-扩散过程,其中扩散和增殖系数的不同比率模仿观察到的从节点到扩散的生长表型谱。然而,仅反应扩散模型不足以解释肿瘤对正常外周组织的质量效应,这是一个关键的临床问题。我们提出了一种分析方法和框架,用于根据在GBM临床管理中常规收集的MRI数据估算GBM的生长特性(增殖,侵袭性,置换潜力)。该框架通过假设局部肿瘤细胞密度与组织体积膨胀之间的耦合来解释正在生长的肿瘤的质量效应。我们根据代表一系列实际增长情况和不确定性水平的综合数据评估重建工作流程。对于与T1加权MRI可检测到的肿瘤相对应的大多数参数组合(90%),目标参数的相对误差小于15%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号