首页> 外文会议>International Research Conference on Smart Computing and Systems Engineering >MRI based Glioma segmentation using Deep Learning algorithms
【24h】

MRI based Glioma segmentation using Deep Learning algorithms

机译:使用深度学习算法的基于MRI的脑胶质瘤分割

获取原文

摘要

Primary brain tumors can be malignant (cancerous) or benign (non-cancerous). Out of primary brain tumors, gliomas are the most common and, high grade gliomas carry a poor prognosis. In our paper, we present a technique to segment the glioma cells in Magnetic Resonance Imaging (MRI) using faster Region based Convolutional Neural Network (R-CNN) and edge detection techniques in image processing algorithms. This study identifies the region of interest that is glioma cells, with higher confidence level and localize the tumor on the MRI with the tumor mask. Further, analysis shows that with the proposed technique it is possible to achieve an average detection accuracy, sensitivity, Dice score and confidence level of 99.81%, 87.72%, 91.14% and 93.6% respectively.
机译:原发性脑肿瘤可以是恶性(癌性)或良性(非癌性)。在原发性脑部肿瘤中,神经胶质瘤是最常见的,高级别神经胶质瘤的预后较差。在我们的论文中,我们提出了一种使用基于区域的卷积神经网络(R-CNN)和图像处理算法中的边缘检测技术在磁共振成像(MRI)中分割神经胶质瘤细胞的技术。这项研究确定了感兴趣的区域是神经胶质瘤细胞,具有较高的置信度,并使用肿瘤罩在MRI上定位了肿瘤。此外,分析表明,利用所提出的技术,可以实现平均检测准确度,灵敏度,Dice得分和置信度分别为99.81%,87.72%,91.14%和93.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号