首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Nonlinear time series online prediction using reservoir kalman filter
【24h】

Nonlinear time series online prediction using reservoir kalman filter

机译:储层卡尔曼滤波的非线性时间序列在线预测

获取原文

摘要

A novel online adaptive prediction method is proposed for complex time series. The KF is adopted in the high-dimension ldquoreservoirrdquo state space and directly updates the output weights of the echo state network (ESN) online. Compared with the expanded Kalman filter (EKF) algorithm of traditional recurrent neural networks, the reservoir KF method offers a implementation without the computation of numerical derivatives, so as to improve the prediction accuracy and extend the applications. Stability and convergence analysis of the proposed method is presented. Simulation examples demonstrate the validity of the proposed method.
机译:针对复杂的时间序列,提出了一种新颖的在线自适应预测方法。 KF被用于高维“状态库”状态空间中,并直接在线更新回声状态网络(ESN)的输出权重。与传统递归神经网络的扩展卡尔曼滤波(EKF)算法相比,水库KF方法提供了一种无需数值导数计算的实现,从而提高了预测精度并扩展了应用范围。提出了该方法的稳定性和收敛性分析。仿真实例证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号