首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Evaluation and visual exploratory analysis of DCE-MRI Data of breast lesions based on morphological features and novel dimension reduction methods
【24h】

Evaluation and visual exploratory analysis of DCE-MRI Data of breast lesions based on morphological features and novel dimension reduction methods

机译:基于形态特征和新颖降维方法的乳腺病变DCE-MRI数据评估和视觉探索性分析

获取原文

摘要

Visual exploratory data analysis represents a well-accepted imaging modality for high-dimensional DCE-MRI-derived breast cancer data. We employ this paradigm for discriminating between malignant and benign lesions based on different shape descriptors thanks to proven and novel dimension reduction algorithms. We demonstrate that shape structure changes such as weighted 3D Krawtchouck moments outperform global averaging moments such as geometric moment invariants in terms of discrimination of benign/malignant lesions. The best visualization of tumor shapes in a two-dimensional space is achieved based on nonlinear mapping methods, especially the ones that consider neighborhood ranks.
机译:视觉探索性数据分析代表了高维DCE-MRI衍生乳腺癌数据的公认成像方式。由于采用了经过验证的新颖降维算法,因此我们基于不同的形状描述符采用这种范例来区分恶性和良性病变。我们证明形状结构的变化(例如加权3D Krawtchouck矩)在区分良性/恶性病变方面优于整体平均矩(例如几何矩不变式)。基于非线性映射方法,尤其是考虑邻域等级的方法,可以实现二维空间中肿瘤形状的最佳可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号