首页> 外文会议>International Geoscience and Remote Sensing Symposium >Fast and robust structure-based multimodal geospatial image matching
【24h】

Fast and robust structure-based multimodal geospatial image matching

机译:快速,强大的基于结构的多峰地理空间图像匹配

获取原文

摘要

This paper presents a fast and robust framework integrating local features for the matching of multimodal geospatial data (e.g., optical, LiDAR, SAR and map). In the proposed framework, local feature descriptors, such as Histogram of Oriented Gradient (HOG) and Local Self Similarity (LSS), are first extracted for every pixel to form a pixel-wise structural feature representation of an image. Then we define a similarity metric based on the feature representation in frequency domain using the 3 Dimensional Fast Fourier Transform (3DFFT) technique, followed by a template matching scheme to detect control points between multimodal data. The proposed framework is based on the hypothesis that structural similarity between images is preserved across different modalities. The major advantages of this framework include (1) structural similarity representation using pixel-wise feature description and (2) high computational efficiency due to the use of 3DFFT. Experimental results on different types of multimodal geospatial data show more accurate matching performance of the proposed framework than the state-of-the-art methods.
机译:本文提出了一种快速而强大的框架,该框架整合了局部特征以匹配多峰地理空间数据(例如光学,LiDAR,SAR和地图)。在提出的框架中,首先为每个像素提取局部特征描述符,例如定向梯度直方图(HOG)和局部自相似度(LSS),以形成图像的像素级结构特征表示。然后,我们使用3维快速傅立叶变换(3DFFT)技术基于频域中的特征表示来定义相似性度量,然后采用模板匹配方案来检测多模态数据之间的控制点。所提出的框架基于以下假设:跨不同的模态保留图像之间的结构相似性。该框架的主要优点包括(1)使用逐像素特征描述的结构相似性表示,以及(2)由于使用3DFFT而具有很高的计算效率。在不同类型的多峰地理空间数据上的实验结果表明,与最新方法相比,所提出框架的匹配性能更加准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号