首页> 外文会议>International Geoscience and Remote Sensing Symposium >A spatial constraint and deep learning based hyperspectral image super-resolution method
【24h】

A spatial constraint and deep learning based hyperspectral image super-resolution method

机译:基于空间约束和深度学习的高光谱图像超分辨率方法

获取原文

摘要

The image super-resolution (SR) technique, which aims at reconstructing a high-resolution (HR) image from a single low-resolution (LR) image, is a classical problem in computer vision. Limited by the imaging hardware, the spatial resolution of a hyperspectral images (HSI) is usually very coarse. Meanwhile, the spectral information of the HSI is extremely important for its applications and cannot be severely distorted. This paper presents a spatial constraint (SCT) strategy with combination of a deep learning method for HSI SR. The SCT strategy restraints the LR HSI generated by the reconstructed HR HSI should be spatially close to the input LR HSI. The deep learning method learns an end-to-end mapping between the spectral difference of the LR HSI and that of the HR HSI. The mapping is represented as a deep convolutional neural network (CNN). The CNN learned spectral difference is utilized to super-resolve the LR HSI while preserve the important spectral information of the desired HR HSI. Experiments have been conducted on three databases that contains both indoor scenes and outdoor scenes. Comparative analyses have verified the effectiveness of the overall method.
机译:旨在从单个低分辨率(LR)图像重建高分辨率(HR)图像的图像超分辨率(SR)技术是计算机视觉中的经典问题。受成像硬件的限制,高光谱图像(HSI)的空间分辨率通常非常粗糙。同时,HSI的光谱信息对其应用极为重要,并且不会严重失真。本文提出了一种结合HSI SR深度学习方法的空间约束(SCT)策略。 SCT策略限制了由重构的HR HSI生成的LR HSI在空间上应接近输入LR HSI。深度学习方法学习LR HSI和HR HSI的频谱差异之间的端到端映射。映射表示为深度卷积神经网络(CNN)。 CNN获知的频谱差异用于超分辨LR HSI,同时保留所需HR HSI的重要频谱信息。在包含室内场景和室外场景的三个数据库上进行了实验。比较分析证明了整体方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号