首页> 外文会议>International Conference on Wireless Algorithms, Systems, and Applications >Detecting Anomalies in Communication Packet Streams Based on Generative Adversarial Networks
【24h】

Detecting Anomalies in Communication Packet Streams Based on Generative Adversarial Networks

机译:基于生成对抗网络的通信包流异常检测

获取原文

摘要

The fault diagnosis in a modern communication system is traditionally supposed to be difficult, or even impractical for a purely data-driven machine learning approach, for it is a humanmade system of intensive knowledge. A few labeled raw packet streams extracted from fault archive can hardly be sufficient to deduce the intricate logic of underlying protocols. In this paper, we supplement these limited samples with two inexhaustible data sources: the unlabeled records probed from a system in service, and the labeled data simulated in an emulation environment. To transfer their inherent knowledge to the target domain, we construct a directed information flow graph, whose nodes are neural network components consisting of two generators, three discriminators and one classifier, and whose every forward path represents a pair of adversarial optimization goals, in accord with the semi-supervised and transfer learning demands. The multi-headed network can be trained in an alternative approach, at each iteration of which we select one target to update the weights along the path upstream, and refresh the residual layer-wisely to all outputs downstream. The actual results show that it can achieve comparable accuracy on classifying Transmission Control Protocol (TCP) streams without deliberate expert features. The solution has relieved operation engineers from massive works of understanding and maintaining rules, and provided a quick solution independent of specific protocols.
机译:传统上,现代通信系统中的故障诊断被认为是困难的,或者对于纯粹的数据驱动的机器学习方法来说甚至是不切实际的,因为它是人为的知识密集型系统。从故障档案中提取的一些带标签的原始数据包流几乎不足以推断出底层协议的复杂逻辑。在本文中,我们使用两个取之不尽的数据资源来补充这些有限的样本:从服务中的系统探测到的未标记记录,以及在仿真环境中模拟的标记数据。为了将其固有知识转移到目标域,我们构造了一个有向信息流图,该图的节点是由两个生成器,三个鉴别器和一个分类器组成的神经网络组件,并且每个向前的路径都表示一对对抗性优化目标。具有半监督和转移学习需求。可以采用另一种方法来训练多头网络,在该方法的每次迭代中,我们选择一个目标来更新沿上游路径的权重,并逐层刷新残差到所有下游输出。实际结果表明,它在分类传输控制协议(TCP)流时可以达到可比的准确性,而无需深思熟虑的专家功能。该解决方案使操作工程师免于繁琐的理解和维护规则工作,并提供了独立于特定协议的快速解决方案。

著录项

  • 来源
  • 会议地点 Honolulu(US)
  • 作者

    Di Zhang; Qiang Niu; Xingbao Qiu;

  • 作者单位

    School of Computer Science Communication University of China Beijing 100024 People's Republic of China;

    Department of Mathematical Sciences Xi'an Jiaotong-Liverpool University Suzhou 215123 People's Republic of China;

    China Mobile Communications Corporation Beijing 100032 People's Republic of China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号