首页> 外文会议>International Conference on the Frontiers and Advances in Data Science >Single text image super-resolution based on edge-compensated autoregressive model
【24h】

Single text image super-resolution based on edge-compensated autoregressive model

机译:基于边缘补偿自回归模型的单文本图像超分辨率

获取原文

摘要

Text image super-resolution technique is widely used to improve the text image quality in different resolution without distortion. However, the existed algorithms for text image super-resolution fail to work under many conditions, such as image blurring, edge discontinuity, edge artifact, etc. In this paper, we propose a novel algorithm framework to solve these above problems, in which we firstly obtain a high resolution text image with a sharper edge by using edge map as the priori condition, and then the edge signals of high-resolution image compensating edge residual is computed by iterative back-projection, finally the false edges and sharpen edges are suppressed at the same time. Experimental results demonstrate the effectiveness of our proposed algorithm compared to previously reported methods.
机译:文本图像超分辨率技术被广泛用于提高不同分辨率的文本图像质量而不会失真。但是,现有的文本图像超分辨率算法在很多情况下都无法正常工作,例如图像模糊,边缘不连续,边缘伪影等。在本文中,我们提出了一种新颖的算法框架来解决上述问题,首先以边缘图为先验条件,得到边缘较锐利的高分辨率文本图像,然后通过迭代反投影计算高分辨率图像补偿边缘残差的边缘信号,最后抑制虚假边缘和锐化边缘与此同时。实验结果证明了与以前报道的方法相比,我们提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号