首页> 外文会议>International Conference on the Frontiers and Advances in Data Science >Dual hybrid manifold regularized non-negative matrix factorization with discriminability for image clustering
【24h】

Dual hybrid manifold regularized non-negative matrix factorization with discriminability for image clustering

机译:具有可分辨性的双重混合流形正则化非负矩阵分解

获取原文

摘要

Matrix factorization techniques are wildly used in computer vision and data mining. Among them, Non-negative Matrix Factorization (NMF) has received considerable attention due to its part-based representation and sparsity. Recent research has shown that not only the data points are sampled from data manifold, but also the features are sampled from feature manifold. To exploit the duality between data space and feature space, researchers have proposed various dual graph regularized matrix. But some shortcomings are shared by the existing methods. 1) Using only one type of graph, k nearest neighbors (KNN) graph, to approximate the complicated manifold in data space and feature space. 2) Most existing methods ignore the discriminative information in image data. In this paper, we propose Dual Hybrid Manifold Regularized Non-negative Matrix Factorization with Discriminability (DHNMFD), a novel nonnegative representation learning algorithm for image clustering. On the one hand, KNN graph and sparse subspace clustering (SSC) based graph are linearly combined to maximally approximate the intrinsic manifold in data space and feature space. On the other hand, discriminative information by approximate orthogonal constraints is exploited to capture the discriminative information of data. We propose an iterative multiplicative updating rule for optimization of DHNMFD. Experiments on two image datasets demonstrated the superiority of DHNMFD compared with other state-of-the-art related methods.
机译:矩阵分解技术广泛用于计算机视觉和数据挖掘中。其中,非负矩阵因式分解(NMF)由于其基于部分的表示形式和稀疏性而备受关注。最近的研究表明,不仅从数据流形中抽取数据点,而且从特征流形中抽取特征。为了利用数据空间和特征空间之间的对偶性,研究人员提出了各种对偶图正则化矩阵。但是现有方法也存在一些缺点。 1)仅使用一种类型的图,即k最近邻(KNN)图,来近似数据空间和特征空间中的复杂流形。 2)大多数现有方法都忽略了图像数据中的区分信息。在本文中,我们提出了具有可分辨性的双重混合流形正则化非负矩阵分解(DHNMFD),这是一种用于图像聚类的新型非负表示学习算法。一方面,将KNN图和基于稀疏子空间聚类(SSC)的图进行线性组合,以最大程度地逼近数据空间和特征空间中的本征流形。另一方面,利用近似正交约束的判别信息被用来捕获数据的判别信息。我们提出了一种迭代乘法更新规则,以优化DHNMFD。在两个图像数据集上的实验证明了DHNMFD与其他现有技术相关的方法相比的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号