首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Detecting periodic limb movements in sleep using motion sensor embedded wearable band
【24h】

Detecting periodic limb movements in sleep using motion sensor embedded wearable band

机译:使用运动传感器嵌入式可穿戴腕带检测睡眠中肢体的周期性运动

获取原文

摘要

Monitoring periodic limb movements in sleep (PLMS) is important since it is correlated with people's quality of sleep and several other sleep disorders. The clinically approved method of examining PLMS is polysomnography (PSG) where the sleep of patients are examined in a laboratory with various sensors attached to their body. However, PSG is time-consuming and expensive for patients and the need for cost-effective and comfortable PLMS detection method has not been fulfilled. Accordingly, we propose a PLMS detection framework which utilizes a wearable motion-sensor-embedded band. In this work, we study the location to comfortably wear the device and accurately collect data on a foot. Further, to increase the accuracy of classifying PLMS, we propose the Motion Synchronized Windowing technique which segments the intervals where movements occur. Finally, we classify PLMS by using various machine learning algorithms typically used in the human activity recognition. Our proposed system achieves the accuracy of up to 96.92% in detecting PLMS. Therefore, our system is a cost-effective and convenient method of monitoring PLMS.
机译:监视睡眠中肢体的周期性运动(PLMS)很重要,因为它与人们的睡眠质量和其他几种睡眠障碍有关。临床上认可的检查PLMS的方法是多导睡眠图(PSG),该方法是在实验室中用各种传感器连接到他们的身体的情况下检查患者的睡眠。然而,PSG对于患者而言既费时又昂贵,并且尚未满足对成本有效且舒适的PLMS检测方法的需求。因此,我们提出了一个PLMS检测框架,该框架利用了可穿戴运动传感器嵌入式频段。在这项工作中,我们研究了舒适佩戴设备并准确收集脚部数据的位置。此外,为了提高分类PLMS的准确性,我们提出了运动同步开窗技术,该技术可对发生运动的间隔进行分段。最后,我们使用人类活动识别中通常使用的各种机器学习算法对PLMS进行分类。我们提出的系统在检测PLMS方面达到了96.92%的精度。因此,我们的系统是一种经济高效的PLMS监控方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号