首页> 外文会议>International Conference on Smart Computing Communications >An Improved Approach for Detection of Diabetic Retinopathy Using Feature Importance and Machine Learning Algorithms
【24h】

An Improved Approach for Detection of Diabetic Retinopathy Using Feature Importance and Machine Learning Algorithms

机译:基于特征重要性和机器学习算法的糖尿病视网膜病变检测方法

获取原文

摘要

Diabetic Retinopathy is a human eye disease that causes damage to the eye's retina and may ultimately result in complete blindness. Early detection of diabetic retinopathy is needed to avoid complete blindness. Physical tests, such as visual acuity test, dilation of pupils, optical consistency tomography, is used to detect diabetic retinopathy. However, it is costly in terms of time and might affect the patients. In these consequences, this paper detects the presence of Diabetic Retinopathy in the human eye using a machine learning algorithm. The proposed method applies classification algorithms on several features (e.g., optical disk diameter, lesion-specific (microaneurysms, exudates) or presence of hemorrhages) of an existing Diabetic Retinopathy dataset. Then the features were extracted and used for the final decision making to predict the presence of diabetic retinopathy. The proposed system used Decision Tree, Logistic Regression. Support Vector Machine for the prediction. The proposed method achieved 88% accurate results which is much better than the existing works. Moreover, the proposed method achieves a better score in precision and recall which are 97% and 92%, respectively compared to the existing result 72% and 63%, i.e., more the 25% in each category on average which proves the enormousness of the proposed method.
机译:糖尿病性视网膜病是一种人眼疾病,会损害眼睛的视网膜并最终导致完全失明。需要及早发现糖尿病性视网膜病,以避免完全失明。物理测试,例如视力测试,瞳孔散大,光学一致性断层扫描,可用于检测糖尿病性视网膜病变。然而,这在时间上是昂贵的并且可能影响患者。在这些后果中,本文使用机器学习算法检测人眼中是否存在糖尿病性视网膜病变。所提出的方法将分类算法应用于现有糖尿病性视网膜病数据集的几个特征(例如,光盘直径,病变特异性(微动脉瘤,渗出物)或出血的存在)。然后提取特征并将其用于最终决策以预测糖尿病性视网膜病的存在。提出的系统使用决策树,逻辑回归。支持向量机进行预测。所提出的方法取得了88%的准确结果,远胜于现有的方法。此外,与现有结果的72%和63%(即平均每个类别中的25%更高)相比,所提出的方法在精度和召回率上分别获得了97%和92%的更高评分,这证明了该方法的巨大优势。建议的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号