【24h】

Application of System Calls in Abnormal User Behavioral Detection in Social Networks

机译:系统调用在社交网络异常用户行为检测中的应用

获取原文

摘要

Abnormal user detection is one of the key issues in online social network security research. Attackers spread advertising and other malicious messages through stolen accounts, and malicious actions seriously threaten the information security of normal users with the credit system of social networks. For this reason, in the literature, there are a considerable amount of research work which detect abnormal accounts in social networks, however, these efforts ignore the problem of the seamless integration of machine learning with human behaviour-based analysis. This paper reviews the main achievements of abnormal account detection in online social networks in recent years from three aspects: behavioral characteristics, content-based, graph-based, and proposes a new social network abnormal user detection method based on system calls in computer's kernel. Using enumeration sequence and hidden semi-Markov method, a hierarchical model of anomaly user detection in social networks is established.
机译:用户异常检测是在线社交网络安全研究的关键问题之一。攻击者通过被盗帐户传播广告和其他恶意消息,并且恶意行为严重威胁使用社交网络信用系统的普通用户的信息安全。因此,在文献中,有大量的研究工作发现了社交网络中的异常帐户,但是,这些努力忽略了机器学习与基于人类行为的分析的无缝集成的问题。本文从行为特征,基于内容,基于图形的三个方面回顾了近年来在线社交网络异常账​​户检测的主要成果,提出了一种基于计算机内核中系统调用的社交网络异常用户检测新方法。利用枚举序列和隐式半马尔可夫方法,建立了社交网络中异常用户检测的层次模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号