首页> 外文会议>International conference on robotics, vision, signal processing and power applications >Artificial Neural Network Application for Damages Classification in Fibreglass Pre-impregnated Laminated Composites (FGLC) from Ultrasonic Signal
【24h】

Artificial Neural Network Application for Damages Classification in Fibreglass Pre-impregnated Laminated Composites (FGLC) from Ultrasonic Signal

机译:人工神经网络在超声波预浸玻璃纤维复合材料(FGLC)损伤分类中的应用

获取原文

摘要

Ultrasonic testing (UT) is a major Non-Destructive Test (NDT) technique used in composite laminates inspection. The traveling ultrasonic waves in various mode display is used to detect any damage. A qualified NDT inspector who complies with ISO 9712 is required to interpret the damages form the ultrasonic signal. However, the inspection performance is subjected to human factors due to fatigue and lack of concentration. Therefore, a study of a damages detection system is carried out to detect and classify the damages. In this study, the damage detection of pre-impregnated laminated composites has been made using ultrasonic prototype machine namely ISI i-InspeX TWO and the classification from the extracted features of A-scan mode display has been performed using Back Proportional Network (BPN). The classification employs two classification stages which is CLASS-1 and CLASS-2 for the first and the second phase respectively. The results of the average performance of CLASS-1 concluded that the proposed approach attained reliable results with the accuracy of 99.99% while the performance result of CLASS-2 was 94.21 %. Thus, these promising classification performances showed that the proposed system is applicable to assist NDT inspectors in their quality inspection process.
机译:超声波测试(UT)是复合层压板检查中使用的主要无损检测(NDT)技术。各种模式显示中的行进超声波用于检测任何损坏。要求符合ISO 9712的合格NDT检查员解释超声信号造成的损坏。然而,由于疲劳和注意力不集中,检查性能受到人为因素的影响。因此,进行了损害检测系统的研究以检测和分类损害。在这项研究中,已经使用ISI i-InspeX TWO超声原型机对预浸层压复合材料的损伤进行了检测,并使用反向比例网络(BPN)对A扫描模式显示的提取特征进行了分类。该分类采用两个分类阶段,第一和第二阶段分别为CLASS-1和CLASS-2。 CLASS-1的平均性能结果表明,该方法以99.99%的精度获得了可靠的结果,而CLASS-2的性能结果为94.21%。因此,这些有希望的分类性能表明,所提出的系统适用于协助无损检测人员进行质量检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号