首页> 外文期刊>Composite Structures >Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures
【24h】

Efficient Artificial neural networks based on a hybrid metaheuristic optimization algorithm for damage detection in laminated composite structures

机译:基于杂交成分优化算法的高效人工神经网络,用于层压复合结构损伤检测

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient Artificial Neural Network (ANN) based on the global search capacity of evolutionary algorithms (EAs) to identify damages in laminated composite structures. With remarkable advances, ANN has taken off over the last decades. However, ANN also has major drawbacks relating to local minima issues because it applies backpropagation algorithms based on gradient descent (GD) techniques. This leads to a substantial reduction in the effectiveness and accuracy of ANN. Some researchers have been come up with some solutions to tackle the local minimal problems of ANN by looking for starting beneficial points to eliminate initial local minima based on the global search capacity of stochastic algorithms. Nevertheless, it is commonly acknowledged that those solutions are no longer useful or even counterproductive in some cases if the network contains too many local minima distributed deeply in the search space. Hence, we propose a novel approach applying the fast convergence speed of GD techniques of ANN and the global search capacity of EAs to train the network. The core idea is that EAs are employed to work parallel with ANN during the process of training the network. This guarantees that the network possibly determines the best solution fast and avoids getting stuck in local minima. To enhance the efficiency of the global search capacity, in this work, a hybrid metaheuristic optimization algorithm (HGACS) of EAs is also proposed, which possibly gains the advantages of both Genetic Algorithm (GA) and Cuckoo Search (CS). GA is applied to generate initial populations with the best quality derived from the ability of crossover and mutation operators, whereas CS with global search capacity is used to seek the best solution. Moreover, to deal with the large amount of data utilized to train the network, a vectorization technique is applied for the data of the objective function, which considerably decreases the computational cost. The obtained results prove that the proposed method is superior to traditional ANN, other hybrid-ANNs, and HGACS in terms of accuracy, and significantly reduces computational time compared with HGACS.
机译:在本文中,我们基于进化算法(EAS)的全球搜索能力提出了一种有效的人工神经网络(ANN),以识别层压复合结构中的损坏。随着卓越的进展,Ann在过去几十年中取出了。然而,ANN还具有与局部最小问题有关的主要缺点,因为它适用基于梯度下降(GD)技术的BackProjagation算法。这导致了ANN的有效性和准确性的大幅降​​低。一些研究人员已经提出了一些解决方案来解决基于随机算法的全球搜索容量来消除初始局部最小值的局部最小问题。尽管如此,如果网络在搜索空间中深入分布过多的局部最小值,则通常在某些情况下常见于这些解决方案在某些情况下不再有用或甚至适得其反。因此,我们提出了一种新的方法,应用了ANN的GD技术的快速收敛速度和EAS的全球搜索能力来训练网络。核心思想是,在培训网络过程中,EAS将与ANN平行工作。这保证了网络可能快速确定最佳解决方案,并避免卡在当地最小值。为了提高全球搜索能力的效率,在这项工作中,还提出了一种混合的EAS的混合成分型优化算法(HGACS),这可能增加了遗传算法(GA)和Cuckoo搜索(CS)的优势。遗址应用于产生初始群体,具有源自交叉和突变运算符的能力的最佳质量,而具有全局搜索能力的CS用于寻求最佳解决方案。此外,为了应对用于训练网络的大量数据,应用了矢量化技术,用于目标函数的数据,这显着降低了计算成本。所获得的结果证明,该方法在准确性方面优于传统的ANN,其他杂交 - ANN和HGAC,并与HGACS相比显着降低计算时间。

著录项

  • 来源
    《Composite Structures》 |2021年第4期|113339.1-113339.16|共16页
  • 作者单位

    Univ Ghent Fac Engn & Architecture Dept Elect Energy Met Mech Construct & Syst B-9000 Ghent Belgium|Univ Transport & Commun Fac Civil Engn Dept Bridge & Tunnel Engn Hanoi Vietnam;

    Ho Chi Minh City Open Univ Fac Civil Engn Ho Chi Minh City Vietnam;

    Univ Transport & Commun Fac Civil Engn Dept Bridge & Tunnel Engn Hanoi Vietnam|Dept Transportat Nghe An Le Hong Phong St Vinh City Nghe An Vietnam;

    Katholieke Univ Leuven Dept Civil Engn B-3001 Leuven Belgium;

    Univ Transport & Commun Fac Civil Engn Dept Bridge & Tunnel Engn Hanoi Vietnam;

    Ton Duc Thang Univ Div Computat Mech Ho Chi Minh City Vietnam|Ton Duc Thang Univ Fac Civil Engn Ho Chi Minh City Vietnam;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial neural network; Evolutionary algorithms; Laminated composite structures; Vectorization technique;

    机译:人工神经网络;进化算法;层压复合结构;矢量化技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号