首页> 外文会议>International Conference on Robotics and Automation >Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network
【24h】

Predicting Vehicle Behaviors Over An Extended Horizon Using Behavior Interaction Network

机译:使用行为交互网络预测扩展视野中的车辆行为

获取原文

摘要

Anticipating possible behaviors of traffic participants is an essential capability of autonomous vehicles. Many behavior detection and maneuver recognition methods only have a very limited prediction horizon that leaves inadequate time and space for planning. To avoid unsatisfactory reactive decisions, it is essential to count long-term future rewards in planning, which requires extending the prediction horizon. In this paper, we uncover that clues to vehicle behaviors over an extended horizon can be found in vehicle interaction, which makes it possible to anticipate the likelihood of a certain behavior, even in the absence of any clear maneuver pattern. We adopt a recurrent neural network (RNN) for observation encoding, and based on that, we propose a novel vehicle behavior interaction network (VBIN) to capture the vehicle interaction from the hidden states and connection feature of each interaction pair. The output of our method is a probabilistic likelihood of multiple behavior classes, which matches the multimodal and uncertain nature of the distant future. A systematic comparison of our method against two state-of-the-art methods and another two baseline methods on a publicly available real highway dataset is provided, showing that our method has superior accuracy and advanced capability for interaction modeling.
机译:预测交通参与者的可能行为是自动驾驶汽车的基本能力。许多行为检测和操纵识别方法的预测范围非常有限,从而没有足够的时间和空间进行规划。为了避免做出不满意的反应性决策,必须在计划中计算未来的长期回报,这需要扩展预测范围。在本文中,我们发现可以在车辆交互作用中找到有关车辆行为的线索,即使没有明确的机动模式,也可以预测某种行为的可能性。我们采用递归神经网络(RNN)进行观察编码,并在此基础上,提出了一种新颖的车辆行为交互网络(VBIN),用于从每个交互对的隐藏状态和连接特征中捕获车辆交互。我们方法的输出是多种行为类别的概率可能性,这与遥远未来的多模式和不确定性相匹配。在公开的真实高速公路数据集上,将我们的方法与两种最新方法和另外两种基线方法进行了系统比较,表明我们的方法具有出色的准确性和先进的交互建模能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号