首页> 外文会议>International Conference on Robotics and Automation >A Supervised Approach to Predicting Noise in Depth Images
【24h】

A Supervised Approach to Predicting Noise in Depth Images

机译:一种监督深度图像中噪声的方法

获取原文

摘要

Modern robotic systems are very complex and need to be tested in simulations with detailed sensor noise models to effectively verify robotic behavior. Depth imagery in particular comes with significant noise in the form of scene-dependent pixel-wise dropouts and distortions. Unfortunately, many depth camera simulations contain limited noise models, or can only support generating realistic depth images of simple scenes, which limits their usefulness in effectively testing perception algorithms. We propose a data driven approach to generate more realistic noise for complex simulated environments by using a convolutional neural network (CNN) to predict which pixels of a simulated noise-free depth image will not have returns (no-depth-return pixels, or NDP). We choose to focus on NDP here, as these dropouts are the most common and dramatic form of depth image noise. To train this network, we use reconstructed real-world scenes from the Label Fusion dataset to provide ground truth depth for each noisy depth image used to scan the scene. We use the resulting noise-free and noisy depth image pairs as labeled examples and train the network to predict which pixels of the noise-free image will be NDP. When used to post-process a simulation of a depth sensor, this system produces realistic depth images, even in cluttered scenes. To demonstrate that our approach successfully closes the reality gap for depth imagery, we show that the popular ICP algorithm for object pose estimation fails more realistically on our CNN-corrupted simulated depth images than on uncorrupted depth images and unsupervised domain adaptation baselines.
机译:现代机器人系统非常复杂,需要在仿真中使用详细的传感器噪声模型进行测试,以有效验证机器人行为。特别是深度图像会伴随着大量的噪声,这些噪声以场景为依存的逐像素衰减和失真形式出现。不幸的是,许多深度相机模拟包含有限的噪声模型,或者只能支持生成简单场景的逼真的深度图像,这限制了它们在有效测试感知算法中的有用性。我们提出一种数据驱动的方法,通过使用卷积神经网络(CNN)来预测复杂的模拟环境中更逼真的噪声,以预测模拟的无噪声深度图像的哪些像素将不具有返回(无深度返回像素或NDP) )。我们选择此处重点关注NDP,因为这些缺失是深度图像噪声的最常见和最戏剧性形式。为了训练该网络,我们使用了Label Fusion数据集重构的真实场景,为每个用于扫描场景的嘈杂深度图像提供了地面真实深度。我们使用生成的无噪声和高噪声深度图像对作为标记示例,并训练网络以预测无噪声图像的哪些像素将是NDP。当用于对深度传感器的模拟进行后处理时,即使在杂乱的场景中,该系统也能产生逼真的深度图像。为了证明我们的方法成功地弥合了深度图像的现实差距,我们证明了流行的ICP算法用于对象姿态估计,在CNN损坏的模拟深度图像上比在未破坏的深度图像和无监督域适应基准上更加失败。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号