首页> 外文会议>International Conference on Robotics and Automation >Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks
【24h】

Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks

机译:视觉和触摸感:用于接触式任务的多模式表示形式的自我监督学习

获取原文

摘要

Contact-rich manipulation tasks in unstructured environments often require both haptic and visual feedback. However, it is non-trivial to manually design a robot controller that combines modalities with very different characteristics. While deep reinforcement learning has shown success in learning control policies for high-dimensional inputs, these algorithms are generally intractable to deploy on real robots due to sample complexity. We use self-supervision to learn a compact and multimodal representation of our sensory inputs, which can then be used to improve the sample efficiency of our policy learning. We evaluate our method on a peg insertion task, generalizing over different geometry, configurations, and clearances, while being robust to external perturbations. We present results in simulation and on a real robot.
机译:在非结构化环境中的接触丰富的操纵任务通常需要触觉和视觉反馈。但是,手动设计将模式与非常不同的特征相结合的机器人控制器并非易事。尽管深度强化学习在针对高维输入的控制策略的学习中已显示出成功,但由于样本复杂性,这些算法通常难以部署在实际的机器人上。我们使用自我监督来学习我们的感官输入的紧凑和多模式表示,然后可以用来提高我们的策略学习的样本效率。我们在钉销任务上评估了我们的方法,概括了不同的几何形状,构造和间隙,同时对外部扰动具有鲁棒性。我们在仿真和真实机器人上展示结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号