首页> 外文会议>International Conference on Robotics and Automation >UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery
【24h】

UWStereoNet: Unsupervised Learning for Depth Estimation and Color Correction of Underwater Stereo Imagery

机译:UWStereoNet:水下立体图像深度估计和色彩校正的无监督学习

获取原文

摘要

Stereo cameras are widely used for sensing and navigation of underwater robotic systems. They can provide high resolution color views of a scene; the constrained camera geometry enables metrically accurate depth estimation; they are also relatively cost-effective. Traditional stereo vision algorithms rely on feature detection and matching to enable triangulation of points for estimating disparity. However, for underwater applications, the effects of underwater light propagation lead to image degradation, reducing image quality and contrast. This makes it especially challenging to detect and match features, especially from varying viewpoints. Recently, deep learning has shown success in end-to-end learning of dense disparity maps from stereo images. Still, many state-of-the-art methods are supervised and require ground truth depth or disparity, which is challenging to gather in subsea environments. Simultaneously, deep learning has also been applied to the problem of underwater image restoration. Again, it is difficult or impossible to gather real ground truth data for this problem. In this work, we present an unsupervised deep neural network (DNN) that takes input raw color underwater stereo imagery and outputs dense depth maps and color corrected imagery of underwater scenes. We leverage a model of the process of underwater image formation, image processing techniques, as well as the geometric constraints inherent to the stereo vision problem to develop a modular network that outperforms existing methods.
机译:立体相机广泛用于水下机器人系统的感测和导航。它们可以提供场景的高分辨率彩色视图。受限的相机几何形状可实现度量精确的深度估计;它们也相对具有成本效益。传统的立体视觉算法依靠特征检测和匹配来实现对点的三角测量,以估计视差。但是,对于水下应用,水下光传播的影响会导致图像质量下降,从而降低图像质量和对比度。这使得检测和匹配特征特别具有挑战性,尤其是从不同的角度来看。最近,深度学习在从立体图像的密集视差图的端到端学习中显示出成功。尽管如此,仍对许多最先进的方法进行监督,并要求掌握地面的真实深度或视差,这在海底环境中很难收集。同时,深度学习也已应用于水下图像恢复问题。同样,很难或不可能为该问题收集真实的地面真实数据。在这项工作中,我们提出了一种无监督的深度神经网络(DNN),该网络可接收输入的原始彩色水下立体图像,并输出密集的深度图和水下场景的色彩校正图像。我们利用水下成像过程模型,图像处理技术以及立体视觉问题固有的几何约束条件来开发优于现有方法的模块化网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号