首页> 美国卫生研究院文献>Healthcare Technology Letters >Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images
【2h】

Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images

机译:通过融合腹腔镜图像中的传统立体知识细节可保留无监督的深度估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Depth estimation plays an important role in vision-based laparoscope surgical navigation systems. Most learning-based depth estimation methods require ground truth depth or disparity images for training; however, these data are difficult to obtain in laparoscopy. The authors present an unsupervised learning depth estimation approach by fusing traditional stereo knowledge. The traditional stereo method is used to generate proxy disparity labels, in which unreliable depth measurements are removed via a confidence measure to improve stereo accuracy. The disparity images are generated by training a dual encoder–decoder convolutional neural network from rectified stereo images coupled with proxy labels generated by the traditional stereo method. A principled mask is computed to exclude the pixels, which are not seen in one of views due to parallax effects from the calculation of loss function. Moreover, the neighbourhood smoothness term is employed to constrain neighbouring pixels with similar appearances to generate a smooth depth surface. This approach can make the depth of the projected point cloud closer to the real surgical site and preserve realistic details. The authors demonstrate the performance of the method by training and evaluation with a partial nephrectomy da Vinci surgery dataset and heart phantom data from the Hamlyn Centre.
机译:深度估计在基于视觉的腹腔镜手术导航系统中起着重要作用。大多数基于学习的深度估计方法都需要地面真实深度或视差图像进行训练。但是,在腹腔镜检查中很难获得这些数据。作者通过融合传统的立体知识,提出了一种无监督的学习深度估计方法。传统的立体声方法用于生成代理视差标签,其中通过置信度量度移除不可靠的深度测量值以提高立体声精度。视差图像是通过从校正后的立体图像与传统立体方法生成的代理标签一起训练双编码器-解码器卷积神经网络生成的。计算有原则的掩模以排除由于损失函数的计算而由于视差效应而在一个视图中看不到的像素。此外,使用邻域平滑度项来约束具有相似外观的相邻像素以生成平滑的深度表面。这种方法可以使投影点云的深度更接近真实的手术部位,并保留真实的细节。作者通过训练和评估部分肾切除术达芬奇手术数据集以及来自Hamlyn中心的心脏体模数据,证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号