首页> 外文会议>International Conference on Robotics and Automation >DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM using Single-View Depth and Gradient Predictions
【24h】

DeepFusion: Real-Time Dense 3D Reconstruction for Monocular SLAM using Single-View Depth and Gradient Predictions

机译:DeepFusion:使用单视图深度和渐变预测的单眼SLAM实时密集3D重建

获取原文

摘要

While the keypoint-based maps created by sparse monocular Simultaneous Localisation and Mapping (SLAM) systems are useful for camera tracking, dense 3D reconstructions may be desired for many robotic tasks. Solutions involving depth cameras are limited in range and to indoor spaces, and dense reconstruction systems based on minimising the photometric error between frames are typically poorly constrained and suffer from scale ambiguity. To address these issues, we propose a 3D reconstruction system that leverages the output of a Convolutional Neural Network (CNN) to produce fully dense depth maps for keyframes that include metric scale. Our system, DeepFusion, is capable of producing real-time dense reconstructions on a GPU. It fuses the output of a semi-dense multiview stereo algorithm with the depth and gradient predictions of a CNN in a probabilistic fashion, using learned uncertainties produced by the network. While the network only needs to be run once per keyframe, we are able to optimise for the depth map with each new frame so as to constantly make use of new geometric constraints. Based on its performance on synthetic and real world datasets, we demonstrate that DeepFusion is capable of performing at least as well as other comparable systems.
机译:尽管由稀疏单眼同时定位和映射(SLAM)系统创建的基于关键点的地图可用于摄像机跟踪,但对于许多机器人任务可能需要密集的3D重建。涉及深度相机的解决方案在范围和室内空间上受到限制,并且基于最小化帧之间的光度误差的密集的重建系统通常约束较差,并且存在比例模糊性。为了解决这些问题,我们提出了一种3D重建系统,该系统利用卷积神经网络(CNN)的输出来为包括度量标准的关键帧生成完全密集的深度图。我们的系统DeepFusion能够在GPU上生成实时密集重建。它利用网络产生的不确定性,以概率的方式将半密集多视图立体声算法的输出与CNN的深度和梯度预测相融合。尽管每个关键帧只需要运行一次网络,但是我们能够针对每个新帧针对深度图进行优化,以便不断利用新的几何约束。根据其在合成数据和真实数据集上的性能,我们证明DeepFusion能够执行至少与其他可比较系统一样的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号