首页> 外文会议>International Conference on Robotics and Automation >Fast and Precise Detection of Object Grasping Positions with Eigenvalue Templates
【24h】

Fast and Precise Detection of Object Grasping Positions with Eigenvalue Templates

机译:利用特征值模板快速精确地检测对象抓取位置

获取原文

摘要

Fast Graspability Evaluation (FGE) has been proposed as a method for detecting grasping positions on objects and is now being used for industrial robots. FGE uses convolution of hand templates with regions on the target object to estimate the optimum grasping posture. However, the hand opening width and rotation angles must be set with high resolution to achieve highly accurate results and the computational load is high. To address that issue, we propose a method in which hand templates are represented in compact form for faster processing by using singular value decomposition. Applying singular value decomposition enables hand templates to be represented as linear combinations of a small number of eigenvalue templates and eigenfunctions. Eigenfunctions take discrete values, but response values can be calculated with arbitrary parameters by fitting a continuous function. Experimental results show that the proposed method reduces computation time by two thirds while maintaining the same detection accuracy as conventional FGE for both parallel hands and three-finger hands.
机译:快速可抓握性评估(FGE)已被提出作为一种检测物体上抓握位置的方法,目前正用于工业机器人。 FGE使用手模板与目标对象上区域的卷积来估计最佳抓握姿势。但是,手的开口宽度和旋转角度必须设置为高分辨率才能获得高度准确的结果,并且计算量很大。为了解决这个问题,我们提出了一种方法,其中手模板以紧凑的形式表示,以便通过使用奇异值分解来更快地进行处理。应用奇异值分解可以使手形模板表示为少量特征值模板和特征函数的线性组合。本征函数采用离散值,但是可以通过拟合连续函数使用任意参数来计算响应值。实验结果表明,该方法将并行手和三指手的检测精度降低了三分之二,同时保持了与传统FGE相同的检测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号