首页> 外文会议>International Conference on Robotics and Automation >Data-Driven Gait Segmentation for Walking Assistance in a Lower-Limb Assistive Device
【24h】

Data-Driven Gait Segmentation for Walking Assistance in a Lower-Limb Assistive Device

机译:数据驱动的步态细分,用于下肢辅助设备中的步行辅助

获取原文

摘要

Hybrid systems, such as bipedal walkers, are challenging to control because of discontinuities in their nonlinear dynamics. Little can be predicted about the systems' evolution without modeling the guard conditions that govern transitions between hybrid modes, so even systems with reliable state sensing can be difficult to control. We propose an algorithm that allows for determining the hybrid mode of a system in real-time using data-driven analysis. The algorithm is used with data-driven dynamics identification to enable model predictive control based entirely on data. Two examples-a simulated hopper and experimental data from a bipedal walker-are used. In the context of the first example, we are able to closely approximate the dynamics of a hybrid SLIP model and then successfully use them for control in simulation. In the second example, we demonstrate gait partitioning of human walking data, accurately differentiating between stance and swing, as well as selected subphases of swing. We identify contact events, such as heel strike and toe-off, without a contact sensor using only kinematics data from the knee and hip joints, which could be particularly useful in providing online assistance during walking. Our algorithm does not assume a predefined gait structure or gait phase transitions, lending itself to segmentation of both healthy and pathological gaits. With this flexibility, impairment-specific rehabilitation strategies or assistance could be designed.
机译:诸如双足步行器之类的混合系统由于其非线性动力学的不连续性而难以控制。如果不对控制混合模式之间过渡的保护条件进行建模,就无法预测系统的发展,因此,即使具有可靠状态检测的系统也难以控制。我们提出了一种算法,该算法允许使用数据驱动的分析实时确定系统的混合模式。该算法与数据驱动的动力学识别一起使用,以完全基于数据实现模型预测控制。使用了两个示例-模拟料斗和来自双足助行器的实验数据-。在第一个示例的上下文中,我们能够非常接近地混合SLIP模型的动力学,然后成功地将其用于仿真控制。在第二个示例中,我们演示了人类步行数据的步态划分,可准确区分姿态和挥杆以及挥杆的选定子阶段。我们仅使用来自膝盖和髋关节的运动学数据,无需接触传感器即可识别出诸如脚跟撞击和脚趾脱下之类的接触事件,这在步行过程中提供在线帮助时特别有用。我们的算法没有假定预定义的步态结构或步态相变,因此无法对健康和病理性步态进行细分。通过这种灵活性,可以设计针对特定损伤的康复策略或援助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号